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A Green's function approach to analysing the effects of 
random synaptic background activity in a model neural 
network 

Paul C Bressloff 
Depanment of Mathematical Sciences, Loughborough University of Technology, 
Loughborough Leicestershire LEI 1 3TU, UK 

Received 27 September 1993 

Abstract. The effect of randomly distributed synaptic background activity on the states of 
self-sustained firing in a model neural network with shunting is investigated. Using mean 
field theory. the steady state of the network is expressed in terms of an ensemble-averaged 
single-neuron Green's function. This Green's function is shown to satisfy a manix equation 
identid in form to that found in the tight-binding-alloy (TEA) model of excitations on a one- 
dimensional disordered lattice. The ensemble averaging is then performed using a coherent 
potential approximation (CPA) thus allowing the steady-state firing rate of the network to be 
determined. The firing rate is found to decrease as the mean level of background activity m o s s  
the network is increased; a uniform background (zero variance) leads to a greater reduction than 
a randomly distributed one (non-zem variUce). 

1. Introduction 

The change in the membrane potential of a neuron induced by a synaptic input depends on 
the size of the deviation of the membrane potential from some fixed resting potential. Recent 
studies have shown that if these so-called shunting effects are taken into account then (i) a 
nonlinear relationship can arise between the input current to the soma of a neuron and the 
incident rates of excitatory inputs synapsing on the dendritic tree of a neuron (Abbott 1991, 
Bressloff and Taylor 1993a. b) and (ii) the inclusion of background synaptic activity leads 
to a modification in the effective membrane potential time constant of a neuron (Bressloff 
and Taylor 1993b, Bressloff 1993). 

The nonlinearity due to shunting produces a low-output firing rate in the presence of high 
levels of input excitation. Thus, if a network of such neurons is in a state of self-sustained 
firing corresponding, for example, to a dynamical fixed point in an attractor network (Amit 
1989), then the neurons tend to fire well below their maximum rate. This is consistent with 
what is observed in certain cortical neurons, and provides a solution to the problem of high 
firing rates found in network models based on neurons whose input current varies linearly 
with synaptic inputs (no shunting). This latter problem has received considerable attention 
in the context of associative memory, where the self-sustained firing pattem is interpreted 
as a memory state (Amit and Treves 1989, Rubin and Sompolinsky 1989). 

Modifications in the membrane potential time constant of a neuron due to synaptic 
background noise can also have important consequences since the time constant parametrizes 
the temporal evolution of the response of a neuron to an input. This has been explored 
from the viewpoint of temporal pattem processing elsewhere (Bressloff 1993, Bressloff and 
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Taylor 1993b). We note here that recent experiments indicate that variations in background 
synaptic activity can lead to a membrane time constant taking a range of values between 5 
and 80 ms, (Bemander et al 1991, Rapp et al 1992). 

In this paper, we analyse the effects of background synaptic activity on the state of 
self-sustained firing in a shunting network based on a compartmental model of a neuron. A 
compartmental model @all 1964, 1967) represents the electrical properties of the dendritic 
tree of a neuron by dividing the latter into sufficiently small regions or compartments such 
that spatial variation of electrical and physical properties within a region are negligible. 
For simplicity, we represent the dendritic tree as a one-dimensional chain of compartments. 
The background synaptic inputs are distributed mndomly across the neurons of the network. 
Using mean field theory arguments (Abbott 1991), we show how the steady state of the 
network is determined by an ensemble-averaged single-neuron Green's function, which 
satisfies a matrix equation identical in form to that found in the tight-binding-alloy (TBA) 
model of excitations on a onedimensional disordered lattice (Elliott et al 1974, Ziman 
1979). Green's function techniques such as the coherent potential approximation (CPA) 
are then used to analyse the effects of statistical fluctuations arising from the distribution 
of synaptic background activity on the steady-state behaviour of the network. It is found 
that synaptic background activity leads to a reduction in the firing rate, which becomes 
more pronounced as the mean level of background activity across the network increases. 
Furthermore, a uniform background produces a greater reduction than a randomly distributed 
one. 

The organization of the paper is as follows: the compartmental model is introduced in 
section 2, and the mean field analysis of a network with background noise is developed in 
section 3. The Green's function formalism of disordered lattices and its application to the 
study of the effects of background noise on network behaviour is presented in section 4. 

2. Compartmental model neuron 

Consider a compartmental model neuron that consists of a chain of 2M + 1 dendritic 
compartments labelled m = 1,. . . , zkM together with a single somatic compartment. The 
passive membrane properties of each compartment m may be represented electrically in 
terms of an equivalent circuit consisting of a membrane leakage resistor R,,, in parallel 
with a capacitor C,, with the ground representing the extracellular medium (assumed to 
be an isopotential). The electrical potential V, across the membrane is measured with 
respect to the resting potential, i.e. the potential when there is no current flowing across 
the membrane. The compartment is joined to its immediate neighbours in the chain by the 
junctional resistors R,,,.,,-, and (figure 1). The time evolution of the membrane 
potential is determined by Kirchoff's law: for each compartment, the total current through 
the membrane is equal to the difference between the longitudinal currents entering and 
leaving that compartment. Thus, 

where U, represents the net extemal input current into the compartment, and (n; m) indicates 
that the summation over n is restricted to immediate neighbours of m. Note that more 
complex dendritic geometries can be modelled by taking the compartments to lie on the 
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Figure 1. Equivalent circuit for a compamnenol model of a chain of successive cylindrical 
segments of a passive dendritic membrane. 

nodes of a tree and applying Kirchoff s law accordingly. However, for the purposes of this 
paper it will be sufficient to consider the simpler one-dimensional lattice. 

A major simplification of the model is to view the soma as a point processor that is 
isopotential with the dendritic compartment nearest to it. The latter is chosen to be at the 
centre of the chain so that the membrane potential of the soma satisfies V = Vo. (This 
choice allows us to ignore end effects in the large chain limit.) The neuron fires whenever 
the membrane potential at the soma exceeds some threshold h, and provided that the neuron 
is outside its absolute refractory period tR. The effects of relative refractory period may 
be incorporated by introducing a time-dependent threshold of the form h(At) ,  where At  is 
the time after emission of the last action potential, such that h(Ar) = co for 0 < At < tR 
and h ( A t )  is continuous and monotonically decreasing for At > tR (until the neuron fires 
again), e.g. h ( A t )  = ho + hl exp(-At/&) for AT > t i  where h0.1 and ra are constants. If 
V(t) is slowly varying, then one can approximate the instantaneous firing rate f ( t )  of the 
neuron by a sigmoid function, 

for some gain g and threshold K .  Equation (2.2) reflects the fact that the larger V ( t ) ,  the 
faster the decreasing threshold h(At)  is crossed from below and thus the greater the firing 
rate f .  The maximum firing rate fma is determined by the absolute refractory period. 

To complete the description of the model it is necessary to specify the form of the 
synaptic inputs. The crucial feature of such inputs as far as the development of this 
paper is concerned is that the changes in membrane potential V,, induced by a synaptic 
input depends on the size of the deviation of V,, from some fixed reversal potential. We 
shall refer to this as a shunting effect. If this is included, then the input current U,  of 
equation (2.1) becomes V,-dependent. More specifically, let Age" denote the increase in 
synaptic conductance induced by the arrival of action potentials at the synapse of then* 
compartment with (Y = 1, . . . , N .  Ignoring voltage-dependent conductance changes arising 
from active processes, we shall take Ag,,(t) = Eunxcln(t). where xu&) is the arrival rate 
of action potentials at synapse (an) and the constant E.,, is determined by factors such as 
the amount of neurotransmitter released in response to an action potential and the efficiency 
with which the neurotransmitters bind to receptors in the post-synaptic membrane. The total 
synaptic current U, is then given by 
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where Sam is the membrane reversal potential of synapse (am). We have also included an 
external injection current Im(t). 

Equations (2.1) and (2.3) may be combined to give a linear matrix equation of the form 
(Perkel et ~l 1981) 

and zm = RmCm, z,,,,, = Rmm,Cm are membrane time constants. We shall refer to r,(t) as 
a shunting term since it arises from the voltage-dependent contribution to the synaptic input 
U, of equation (2.3). It is clear from .equations (2.5) and (2.6) that one can interpret the 
shunting term as an input-dependent modification of the membrane time constant tmr i.e. 
l/zm + l/zm + rm(t). (Note that modifications in the membrane potential time constant 
by synaptic activity has recently been observed in a number of experiments (Bernander et 
QI 1991, Rapp et a1 1992).) 

The solution of equation (2.4) under the initial condition V(0)  = 0 may be expressed 
formally as 

where T denotes the time-ordering operator, i.e. T(Q(t)Q(t’)) = Q(t)Q(t’)O(t - 2’)  + 
Q(t’)Q(t)e(t’ - t )  and e ( x )  = 1 for x > 0 and O(x) = 0 otherwise. In general, 
equation (2.8) is difficult to analyse. However, if the shunting term r(t) is dropped from 
equation (2.5) then equation (2.8) reduces to 

= (2.10) 

We identify Gmn as the membrane potential response function or Green’s function of the 
dendritic chain. This is, Gmmn(t - t’) determines the membrane potential of compartment m 
at time f in response to a voltage-independent input current stimulation of compartment n at 
time t’. Note that in contrast to the time-ordered expression of equation (2.8), the Green’s 
function only depends on the time difference t - t‘. 

The matrix Q defined in equation (2.6) has real, negative, non-degenerate eigenvalues Ai 
reflecting the fact that it determines the time evolution of membrane potentials in a passive 
RC circuit, which is a dissipative system. Thus, G has the general form 

~ , ~ ( t )  = C e x p ( - t ~ ~ ~ , $ ! ,  (2.1 1) 
i 
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where the coefficients E,$, can be determined using Sylvester's expansion theorem. A 
simple analytical expression can be derived for the Green's function GCo) of an infinite, 
uniform chain using standard results from the theory of diffusion on a lattice (Bressloff and 
Taylor, 19936). The uniformity condition is imposed by setting 

R, = R c, = c Rm.m+l &+I,, = R' r = RC r'= R'C (2.12) 

such that Gf, satisfies the differential equation 

(2.13) 

Equation (2.13) may be solved using Fourier method with Gt, depending only on the 
difference Im -al. The result is 

where 

1~ 2 
r r' E(k) = - + -(1 - cosk). 

(2.14) 

(2.15) 

Equation (2.14) may be rewritten as G t , ( f )  = e-r~rIlm-nl(2t/r'), where I,, is the modified 
Bessel function of integer order. Note that we can also calculate Gco) directly from 
equation (2.10) by setting Q = Q(O), where 

1 Q% - - + - + - ( h , n - l +  Jm,n+l)  (2.16) 

expanding the matrix etQ'") in powers of f ,  and using results from the theory of random 
walks on a lattice. This latter approach can be generalized to the case of more complex 
topologies associated with the dendritic tree @ressloff and Taylor 1993~). 

(: :!) z' 

3. Shunting inhibition and synaptic background activity 

When shunting effects are included in equation (2.1) the resulting solution (2.8) for the 
membrane potentials involves a time-ordered product that is difficult to analyse without 
further assumptions concerning the synaptic inputs. One major simpliciation is to take the 
rates of input stimulation to be constant. In paiticular, suppose that each compartment of 
a uniform chain consists of two groups of identical synapses, one excitatory and the other 
inhibitory. Equation (2.7) becomes 

where E, and H,,, are the constant rates of excitatory and inhibitory stimulation of the mth 
compartment, and are the corresponding reversal potentials with S(') > 0, Sm) < 0. 
The constants are determined by the density and efficiency of syiiapses across a 
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compartment, and together with the reversal potentials are assumed to be siteindependent. 
Since rm and hence Q are now time-independent, equation (2.8) reduces to 

where 

Thus, in the presence of shunting, the membrane potential V, in equation (2.10) is a 
nonlinear function of the constant excitatory and inhibitory inputs Em and H,. As pointed 
out previously (Abbott 1991, Bressloff and Taylor 1993% b), this feature is important since 
a recurrent network of such neurons can operate in a regime of self-sustained firing in which 
the neurons are firing well below their maximum rate f-: this is consistent with what is 
observed in real cortical systems. (Standard associative networks, on the other hand, consist 
of neurons whose membrane potential or activation state is linear in inputs, so that they 
tend to fire at their maximum rate (Amit 1989).) 

To illustrate this point in more detail, we shall follow the discussion of Bressloff and 
Taylor (1993b) and determine the steady-state value Vm of the membrane potential at the 
soma in the case of the infinite uniform dendritic chain. We shall take the pattem of input 
stimulation to be in the form of non-recurrent lateral inhibition as illustrated in figure 2. 
That is, an input that excites the mth compartment also inhibits all other compartments in 
the chain. In particular, we choose a pattem of excitatory and inhibitory stimulation such 
that 

Eo = 0 E. =a,E Ea, = 1 
n 

(3.4n) 

(3.4b) 

We have assumed that there is no direct stimulation of the soma (Eo = 0) and that the relative 
distribution of excitation across the chain as specified by the a.s is fixed. We have also 
set = 1 for convenience. It then follows that the shunting term rm of equation (3.1) 
becomes site-independent, r, = E ,  E = Cm E,, and exp(tQ) = exp(-ZE)G(O)(t), where 
Gco) is the response function of an infinite, uniform chain (equation (2.14)). Finally, we 
restrict our discussion to the case of shunting inhibition, S(') = 0. Thus the inhibitory inputs 
do not contribute directly to the membrane potential V ( t )  in equation (3.2) but affect its 
behaviour indirectly through the presence of the factor e-'€. Taking the limit t + 00 in 
equation (3.2) then leads to the result that the steady-state potential V m  at the soma (m = 0) 
in response to constant non-recurrent lateral inhibition (figure 2) is 

where G(O) is the Laplace transform of G('), 

(3.5) 

(3.6) 
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Em 

Figure 2. Pattem of excitatory and inhibitory inputs in the case of non-recurrent lateral inhibition. 

Note that in the long-time l i t  we can neglect the effects of any transients since the matrix 
Q has negative definite eigenvalues. 

Substituting equation (2.14) into equation (3.6) gives 

(3.7) 

Equation (3.7) may be rewritten as a contour integral on the unit circle C in the complex 
plane. That is, introducing the change of variables z = e'' and substituting for E(k) using 
equation (2.15), 

The demoninator in the integrand of equation (3.8) has two roots, 

with A,- lying within the unit circle. Hence, evaluating equation (3.8) we obtain 

(3.8) 

(3.9) 

(3.10) 

It follows from equations (3.10) and (3.5) that for low levels of excitation E,  Voo is 
approximately a linear function of E.  However, as E increases, the contribution of shunting 
inhibition to the effective time constant becomes more and more significant, and V m  
eventually begins to decrease. For large E ,  

(3.11) 

with A- + 0 and hence V m ( E )  + 0 as E + 00. 

Now consider a population of excitatory neurons, each of which has the pattern of 
stimulation as described above with the net excitatory rate E impinging on an individual 
neuron being determined by the average firing rate (f) of the population. For a large 
population, a reasonable approximation is to take BE = (f) for some constant B. Within 
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a mean field approach the steady-state behaviour is given by the self-consistency condition 
(Abbott 1991) 

BE = F(Vm(E))  (3.12) 

where F is the sigmoidal function of equation (2.2) and V m ( E )  satisfies equation (3.10). 
Using graphical methods (Abbott 1991, Bressloff and Taylor 1993a,b) it can be shown 
that there are two stable solutions to equation (3.13, one corresponding to the silent state 
E = 0 and the other to a state with a firing rate well below fmm On the other hand, in 
the absence of shunting, V m ( E )  is a linear function of E, and the second stable state has 
a firing rate close to f-. Since the network settles into a state of low firing rate in the 
presence of shunting, one can take the output function F to be approximately linear. Such 
a linearization will greatly simplify our subsequent analysis. 

In the above analysis, the pattern of non-recurrent inhibition (figure 2) was chosen 
so that the shunting term r,,, was site-independent, allowing the Green's function GCo) of a 
uniform dendritic chain to be used. We shall now consider a more general pattern of shunting 
inhibition, which includes synaptic background activity, and determine the resulting changes 
in the steady-state behaviour of the neuron population. In particular, suppose that a given 
neuron in the population has a pattern of input stimulation given by equation (3.4) except 
that there is an additional random background conkibution to the inhibitory rate Hm, 

H m = C E n f B .  (3.13) 
nicm 

We shall assume that the em are distributed randomly across the population of neurons 
according to the probability density PO), where p is siteindependent. (For simplicity, any 
cprrelations between <s at different sites are discounted, (&&J = 0 for m # n.) Setting 
G ( t )  = G(t)e-'=, the steady-state membrane potential at the soma of an arbitrary neuron in 
the population is given by 

V m ( E )  = S( ' )ECa ,G&, (E)  (3.14) 
n#O 

where G ( E )  is the Laplace transform of B(t) ,  

G ( E )  = dt exp(-tE) exp[t(&"' - diag(b))]. (3.15) 

Note that G ( t )  is the Green's function of a infinite, non-uniform dendritic chain where the 
source of non-uniformity is the random background e,,,. 

Im 
Using mean field arguments we now take E to satisfy the self-consistency conditiod 

BE = ( F ( V Y E ) ) ) B .  (3.16) 

The solution to this equation then determines the average firing rate of the network. The 
evaluation of the ensemble average over < in equation (3.16) is a non-trivial problem for a 
nonlinear function F such as a sigmoidal. However, progress can be made if we assume that 
the firing rate is a linear function of V m  (see previous comments) such that equation (3.16) 
is replaced by 

BE = 4 V m ( E ) ) c  + P (3.17) 
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for constants, U, y .  As we shall show in the'next section, approximate expressions for the 
ensemble average of G ( E )  can be obtained using Green's function techniques familiar from 
the theory of disordered crystalline solids (Elliott et al  1974, Ziman 1979). One particular 
result is that (G(E))t has the general form 

(3.18) 

Thus, although for the disordered system (non-zero random background activity) G,,(E) 
is not simply a function of the relative displacement m - n, translational invariance is 
recovered on performing the ensemble average over <. This reflects the fact the density 
p ( [ )  has been taken to be site-independent. Comparing equation (3.18) with equations (3.7) 
and (3.8) we see that the so-called 'self-energy' term X(E, k )  alters the pole structure in 
k-space and hence the value of the eigenvalues A* in equation (3.9). We shall investigate 
how this affects the average firing rate of the network in section 4. 

4. Green's function formalism 

We begin our analysis of (G(E))t by noting from equation (3.15) that G(E) satisfies 

E[Q,% - ( t m  + E)&"lGm,n(E) = -6,  (4.1) 
m' 

where &(O) satisfies equation (2.16). In other words, the Laplace-transformed Green's 
function G ( E )  may be rewritten as the inverse operator 

G(E) = [E1 - Q]-' (4.2) 

with Q,, = QtA, - <,dm and I the unit matrix. Furthermore, in the absence of synaptic 
background activity (fm 0) one obtains 

G(O)(E) [EI - &(o)]-i (4.3) 

where G(O)(E) is the Laplacetransformed Green's function of a uniform chain, 
equation (3.7). 

We deduce from equation (4.1) the following result: the (Laplace-transformed) Green's 
function of a uniform dendritic chain with random synaptic background activity satisfies a 
matrix equation identical in form to that found in the TRA model of excitations on a one- 
dimensional disordered lattice. In the former model, &(') represents the electrical properties 
of the dendritic chain, E is the total rate of input excitation and [ is the synaptic background 
activity, which may be considered as a random perturbation of Q ' O ) ;  the ensemble average 
(G(E)) determines the average firing rate of a population of neurons. On the other hand, in 
the TRA model, Q'O) represents an effective HamiItonian perturbed by the diagonal disorder 
[ and E is the energy of excitation; (G(E)) determines properties of the system such as 
the density of energy eigenstates. (For a review of TRA models, see Elliott et al  (1974) and 
chapter 9 of Ziman (1979).) 

The above result implies that many of the Green's function techniques developed for 
the evaluation of (G(E)) within the context of TBA models may be carried over to the 
dendritic model. As described more fully below, such techniques involve expanding G(E) 
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Figure 3. Diagrams appearing in the Dyson expansion of the singleneuron Green's function. 

of equation (4.2) as a series in e ,  taking the ensemble average term by term, and resumming 
the series according to some approximation scheme; an exact resummation is not generally 
possible. Such a resummation leads to an approximate expression for the self-energy matrix 
C ( E ,  k) of equation (3.18). One condition on the validity of any approximation scheme for 
the dendritic model is that the resulting self-energy is positive, C 2 0; this is a consequence 
of the fact that e,,, 2 0 for all m and all elements of the ensemble. Such a condition will 
also ensure that (G( t ) )  -+ 0 in the limit t + CO. One should note that although the TBA 
and dendritic models are formally equivalent, they describe very different physical systems. 
Thus, there are differences between the two models with respect to the restrictions imposed 
on the nature of $ and on the interpretation of ( G ( E ) ) .  With this in mind, we shall now 
describe how the Green's function formalism of disordered systems can be applied to our 
neural network model. We shall follow closely the discussion of Ziman (1979). to which 
we refer the reader for more details. 

4.1. Propagator expansion 

Formal manipulation of equation (4.2) leads to the Dyson equation 

(4.4) 

where A = diag($). (To obtain formal equivalence with the expressions of Ziman (1979) 
replace $,,, by -em.) Equation (4.4) may be expanded as a series in e such that 

G = ~ ( 0 )  - G(O)AG 

(4.5) 

Equations (4.4) and (4.5) are represented diagramatically in figure 3. At first sight it would 
appear that one could determine (G) by performing an ensemble average of the right-hand 
side of equation (4.5) term by term. However, the resulting series cannot be resumed 
exactly; The simplest and crudest approximation is to replace each factor e,,, by the site- 
independent average c .  This leads to the so-called virtual crystal approximation (VCA), 
where 

(G(E)) = Gm'(E + 5). 
That is, statistical fluctuations associated with the random synaptic inputs are ignored so that 
the ensemble-averaged Green's function is equivalent to the Green's function of a uniform 
dendritic chain with a modified membrane time constant such that 115 + l/t + (see 
equation (3.7)). 
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When we attempt to take into account statistical fluctuations we run into the difficulty 
that there are no restrictions imposcd on the summation over site indices so that an element em may appear several times in the same product. For example, if a particular term in 
the series expansion of equation (4.5) involves $2 then ensemble averaging will lead to a 
contribution A = (t2), and in general the variance o f t  will be non-zero, implying A # gz. 
This is illustrated diagrammatically in figure 4. Thus, the ensemble average of the series 
will lead to successively more complex contributions from successive terms whose sum 
cannot be calculated exactly. Hence, various approximation schemes have been developed 
to improve upon the VCA formulation. 

Figure 4. Diagrams appearing in the expansion of the ensembleaveraged Green's function. 

One of the simplest schemes is based on a partial resumation over diagrams involving 
unbroken strings of repeated site indices. For example, the series in figure 5 may be summed 
using a Dyson equation to obtain the renormalized background contribution, 

In equation (4.7) we have exploited the translational invariance of G". It follows that 
such diagrams can be removed f?om the full propagator expansion of equation (4.5) by 
replacing the synaptic background 5;. with the renormalized background 11, and requiring 
nearest-neighbour site indices to be different, 

There still remains the problem of repeated indices on non-nearest-neighbour sites. 
However, if an ensemble average of equation (4.8) is taken, then correlations contribute 
less than they do in the original series (4.5). Therefore, an improvement on the VCA is 
expected when vm in equation (4.8) is replaced by the ensemble average e, where 

Note that i j  is an implicit function of E .  The resulting series can be summed to obtain an 
approximation G ( E )  to the ensemble-averaged Green's function ( G ( E ) )  given by 

(4.10) G ( E )  = G("(E + g ( E ) )  

where 

(4.11) 

The above approximation is known in the theory of disordered systems as the average 
t-matrix approximation (ATA). 
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Fiyre 5. Diagrammatic representation of the renormalized synaptic background. 

4.2. Coheren! potential approximation 

The most effective single-site approximation scheme in the study of disordered lattices is 
the so-called coherent potential approximation (CPA). In the context of our neural network 
model, this scheme involves taking each dendritic compartment to have an effective (site- 
independent) background synaptic input % ( E )  for which the associated Green's function 
is 

G(E) = G@)(E + 2 ( ~ ) ) .  (4.12) 

The self-energy term % ( E )  is assumed to take account of any statistical fluctuations (at 
least at the single-site level), which leads to a self-consistency condition for $(E). First, 
observe that &(E) satisfies a Dyson equation, 

G = G(O) - G(o)diag(2)G. (4.13) 

On the other hand, the true Green's function satisfies equation (4.4). Solving equation (4.13) 
for G(O) and substituting into equation (4.4) gives 

G = & - Gdiag(t - %)G. (4.14) 

We can now analyse equation (4.14) along identical lines to the ATA scheme of the previous 
section. In particular, we introduce a renormalized background field 

(4.15) 

and perform a series expansion of the form (4.8) with G(O) replaced by G and 4 by 9. 
Since the self-energy term % ( E )  is supposed to take care of any statistical fluctuations, we 
should recover 6 on performing an ensemble average of this series. Ignoring multi-site 
correlations this leads to the self-consistency condition 

This is an implicit equation for g ( E )  that can be solved numerically to obtain % ( E )  as a 
function of E. 

A particularly simple choice for the distribution of the random background activity is 
to assume that each dendritic compwment receives either an input 6~ with probability PA 
or an input t~ with probability p~ = 1 - P A .  Then equation (4.16) reduces to the algebraic 
equation 

(4.17) 
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It is useful to rewrite equation (4.17) in the form 

- i + tAtB6;Oo c =  
1 + + t B  - %)& 

(4.18) 

which can be evaluated by iterative substitution in the denominator. One of the important 
features of the CPA scheme is that it interpolates smoothly between the limits of weak and 
strong disorder where explicit expressions for % ( E )  can be obtained. The degree of disorder 
is measured by the ratio 

(4.19) 

The denominator in equation (4.19) is the variation of E ( @ ,  equation (2.15), over the interval 
-R < k < R. In the weak disorder limit, equation (4.18) reduces to 

5 p A t A  + p B t B  (4.20) 

which is the result that would have been obtained using a VCA. The next order approximation 
to equation (4.18) is 

5 PACA + P B ~ B  - P A P B ( ~ A  - t B )  2 G,, (0) . (4.21) 

On the other hand, in the case of strong disorder, &,(E) s (E+k(E))- ' ,  which substituted 
into equation (4.18) leads to the result 

G(E) x P~G(O)(E  + t A )  + P~G(O)(E  t t B ) .  (4.22) 

That is, the system behaves as if there are two independent uniform dendritic chains, one 
with constant background [A and the other with constant background t ~ .  

4.3. Analysis of network behaviour 

The steady-state behaviour of our model network can be obtained quite simply in the CPA 
(or ATA) scheme. First theself-energy % ( E )  is calculated using equation (4.16) for some 
given density p ( 0 .  Then G ( E )  is evaluated using equations (4.12) and (3.10), that is, 

(4.23) 

where 

?'(E + % ( E )  + z-*) 
(4.24) 

r'(E + % ( E )  + 5-1) * 
2 

?.*(E) = 1 + 

Finally, the stead state membrane potential at the soma averaged overall elements of the 
network is given by 

(4.25) 
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To investigate the effectiveness of the CPA in determining the influence of synaptic 
background activity, we consider the simple Bernoulli distribution introduced at the end 
of section 4.2 in which = ~ A , B  with probability PA,B where n is the compartment 
label. For simplicity, we set z = t' and a, = S,J, i.e. excitatory inputs only impinge on 
the compartment at n = 1. We compare the results for (V") based on CPA calculations 
with numerical estimates. The latter are obtained by numerically solving the underlying 
set of differential equations (2.1) for a uniform dendritic chain of 61 compartments 
(n = 0, f l ,  . . , , ct30) and averaging the steady-state membrane potential at the soma 
(n = 0) over 1000 trials. In figure 6, the average stead state (Vm) (in units of S") is 
plotted as a function of the rate of excitation E (in units oft) for $A = 2.0, e~ = 0.0 
and PA,B = t; the degree of disorder is low with 6 = 0.5. The data points are based on 
numerical estimates whereas curve (ii) is based on CPA calculations. Curve (i) corresponds 
to zero background activity. The analogous results for CA = 10.0, (B = 0.0 and PA.B = 1 
are displayed in figure 7. Here, the degree of disorder is relatively large with 6 = 2.5. It 
can be seen that good agreement between theoretical and numerical estimates are obtained 
in both cases. 

0 5 10 15 20 
ET 

Figure 6. Expectation value of the steady-state membrane potentizl (I") (in units of S@) 
ss a function of the ne rate of excitation E (in units of i). Data points are obtained from 
numerical estimates of (V") for a non-zero synaptic background with 6~ = 2.0. EB = 0.0 and 
pA.B = 1.. Curve (ii) represents the conesponding values for (V") cdcuhted using the CPA. 
Curve (i) shows the membrane potential in the absence of a random background. 

Having determined the average steady state (V-), the firing rate of the network can 
then be found by solving the mean field equation (3.17). We shall proceed within the CPA 
scheme. Substituting equation (4.25) into equation (3.17) with a. =an, ,  gives 

B E  = c&EG;;)(E + %(E)) +(o (4.26) 

where %(E) satisfies equation (4.18). It is useful to consider the solutions to equation (4.26) 
from a ,qphical viewpoint. In terms of figure 6 or 7, these solutions correspond to the 
points of intersection of the straight line @E - (o)/cuSce) with curve (ii), which is the CPA- 
based calculation of (Vm)/S@).  It is clear that there are two points of intersection, one on 
either side of the peak of curve (ii). However, the only one of interest is located on the 
portion of the curve with negative slope, since it may be identified with the state of low 
firing discussed in section 3. One can show this by considering the corresponding solutions 
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Figure 7. Same as figure 6 with 6~ = 10.0, and (8 = 0.0. 
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Figure 8. Firing rate f (in Units of I - ’ )  as a function of the mean level of background activity 
for fixed variance (0’ = I). 

in the case of zero background activity and nonlinear response function F (equation (2.2)) 
(Bressloff and Taylor 1993a, b). 

The required solution, which is denoted by E*, may be obtained by numerically solving 
the simultaneous equations (4.26) and (4.18). The results are displayed in figures 8 and 
9, where the steady-state firing-rate f ,  ‘f = BE*, is plotted for a range & values. The 
firing rate and the inputs E’, ~ A , B  are all measured in units of I/?, and the constant p is 
set to zero for simplicity. Two particular cases are considered. The first is the variation of 
f with the mean .$ = PACA + p& for fixed variance U’ = p ~ p ~ ( t ~  - &J2, as shown in 
figure 8 for B’ = 0.01 and B’ = 0.015, where = p / ~ r S ( ~ ) .  It can be seen that the firing 
rate decreases as the mean activity across the network increases. The second case is the 
variation of f as a function of U’ for fixed .$. Here the firing rate increases as the variance 
in the distribution of activity across the network increases (see figure 9). In the low-disorder 
limit, the dependence on and U’ can be deduced immediately from equation (4.21), after 
rewriting it in the form $ ( E )  F;: e - O ~ G ; ) ( E ) .  

We conclude from the above results that (i) synaptic background activity can influence 
the behaviour of a neural network and, in particular, leads to a reduction in the steady-state 
fuing rate of a network, and (ii) a uniform background reduces the firing rate more than a 
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F i p  9. Firing rate as a function of the background variance at a fixed level of mean activity 
( E  = 1). 

randomly distributed background. Note that the former result is independent of the choice 
of distribution p of p (discrete or continuous) since synaptic background activity can only 
produce a positive self-energy term %, i.e. f > 0, and &E) G(’)(E+ % ( E ) )  < G@)(E) 
for 2 0. It is unclear whether or not the latter result also extends to arbitrary positive 
distributions p. We hope to consider this issue further elsewhere. 

5. Discussion 

The main theme of this paper bas been that random synaptic background activity can lead 
to non-trivial changes in the steady-state behaviour of a shunting neural network. This 
was demonseated within a mean field theory framework by considering the states of self- 
sustained firing in a recurrent network. It was shown how the effects of a random background 
could be taken into account using Green’s function techniques developed originally for the 
study of excitations on disordered lattices. A general result of this paper is that background 
synaptic activity reduces the steady-state firing rate of a network. If the background is 
distributed according to a Bernoulli distribution, then we have the further result that a 
uniform background leads to a greater reduction in the firing rate than a randomly distributed 
background. A few comments are in order: 

(a) A major simplification of our analysis is to take the firing rate to be a linear function 
of the membrane potential of a neuron. A partial justification of this is that, in the absence 
of background activity, the network settles into a state that has a relatively low firing rate, 
i.e. the neurons operate in the linear regime of the sigmoid function F (equation (2.2)). A 
fuller treatment would need to evaluate ensemble averages of the form (F(Vm))p .  One 
approach might be to perform a perturbation expansion in the gain function g leading to 
higher-order terms such as (G(E)G(E))c; these can then be evaluated using an extension 
of the Green’s function techniques presented in this paper (see Elliott et al 1974). 

(b) Another possible application of the Green’s function formalism is analysing the 
linear frequency response of a population of lateral inhibitory networks in the presence of 
random synaptic background activity. Lateral inhibitory networks play an important role in 
both the visual (Hartline 1974) and auditory systems (Shamma 1989). A major difference 
between this problem and the one considered in the present paper is that the former is 
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concerned with Fourier rather than Laplace transforms, i.e. E is replaced by i o  where o is 
the frequency of response. It follows that the self-energy term C becomes complex, leading 
to a non-trivial modification in both the phase and amplitude of the average response. 
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